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Discrete-time analogues of some nonlinear oscillators in the 
inverse-square potential 
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Centre for Complex Systems and Visualization, Unversity of Bremen, Postfach 330 440, 28334 
Bremen, G e m y  

Received 12 September 1994 

Abstract We propose a family of symplectic maps providing finite-difference approximations 
for the Wojciechowski and RosacMus system. The Lax pair representations are found and 
complete integrability is proved 

1. Introduction 

Discrete-time analogues of completely integrable systems in classical mechanical have in the 
last few years attracted growing attention (see, e.g., [I J and references therein and below). 
They turn out to possess mathematical structures which are by no means simpler than 
the corresponding structures of their continuous-time counterpans. On the contrary, these 
discrete structures are often richer and more general. The number of examples of integrable 
multi-dimensional maps remains relatively small, however, and general procedures allowing 
one to unify all the known examples and t o  find new ones in a systematic way are still 
lacking. 

Several families of the systems 

xn(t t h )  t X k ( t  - h )  = f k ( X ( f ) )  x = ( x , ,  . . . , XN)T E R N  (1) 

defining integrable multi-dimensional symplectic maps have been found in particular, 
discrete-time analogues of certain one-dimensional oscillators [Z], of the Neumann system 
describing the motion of a particle on a sphere in a harmonic potential [3], and of 
generalized Toda lattices [4], of the Garnier'system and its generalizations related to 
Hermitian symmetric spaces [SI. 

Fix N real numbers 
m i ,  1 < k 6 N (so that ma are either real or pure imaginary), and consider the system 

In this paper we propose a kind of generalization of (I). 

= f k ( q ( f ) )  1 < k 6 N (2) 
(we will also consider a more general case, when the right-hand side reads f k ( q ( t ) ,  q(t-h))). 
In (2). as in (I), the functions q( t ) , t  E hZ, are not supposed to be defined for all 
f E R. Unlike (I), it is natural to assume that all the qk's are positive, so that 
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q = (41,. . . , q N ) T  E W:. One would like, as usual, to set r ( t )  = q ( t  - h),  in order 
for (2) to define a map ( q ( t ) ,  r ( t ) )  H (q(t + h),  r ( t  + h) )  of x !Ry onto itself. Some 
remarks are in order, however. First, in the case of mi > 0 the domain of this map is 
not the whole W: x W:, but its subset defined by qir i  > mi. Second, this map is well 
defined if both the positive and negative branches of the square root are allowed. In fact 
ZN different maps are encoded in (2): if one fixes the branches for 

then the branches for 

are uniquely defined by (2). So it might be more convenient to re-write equation (2) as 

= fk(q(0) 

where &k E (fl), 1 < k < N ,  and all the square roots are now assumed to be positive. In 
this form the equation unambigously defines a map 

(q(0,  r ( 0 ,  I+ (q(t + h). r ( t  + h ) ,  ~ ( t  + h ) )  

the price paid being the enlarging of the domain by means of a sign space, i.e. to 
Ry x wy x [*1}N. 

Another way to avoid the ambiguity is to introduce the variables 

instead bf rk(t) = q k ( t  - h). In the variables (4, p )  the map reads 

P k ( r  i- h)q.dr t h )  = (fa@(!)) - P k ( t ) ) q k ( t ) .  

This form of the map has an additional advantage: the variables (q ,  p )  in some cases turn 
out to be canonically conjugate. More precisely, if f ( q )  is a gradient of a scalar function, 
then the map (q(r) ,  p(tp I+ (q(t + h ) ,  p(t + h) )  is symplectic with respect to the standard 
symplectic structure zkzl dpk A dqr (see section 2). The disadvantage of this form is that 
the natural reversibility of the equation (2) is lost. 

In what follows we shall prefer the form (2). always keeping in mind that to every 
square root ,/- there is attached a certain sign Q. 

TO conclude this introduction, the continuous limit will be briefly described (for 
additional remarks concerning the concrete examples, see below). If mk = h p k .  f ( q )  = 
2q t h2p(q )  + o(h*), then, for small h, equation (2) approximates the ordinary differential 
equation q k  = (pi /& + gdq).  This justifies the title of the present paper. 
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2. A discrete version of the Wojciechowski system 

The remarkable system introduced by Wojciechowski in [6]  reads 

It is Hamiltonian with a Hamiltonian function 

For the case when all the OR's are different, Wojciechowski found N independent integrals 
of this system 

and proved that they are in involution. He proposed two different proofs for this fact: one 
based on a direct and tiresome calculation, and the second following immediately from the 
Lax pair representations for the Hamiltonian flows with Hamiltonian functions .?k. Such a 
representation for the BOW with the Hamiltonian function 71 = E,"=, F k  reads 

t = [ M , L ]  

where L, M are N + 1 by N + 1 matrices depending on the phase-space variables p ,  q and 
a spectral parameter (Y 

$?E + S2 + qqT f f q  + p + i: 
.c= ( 

-aqT + p' - i 

Here E stands for the N by N unity matrix, S2 = diag(w1, . . . . ON) and 

The third proof of involutivity could be based on the r-matrix structure for the Lax 
matrix L, but such a structure was not found in 161. The corresponding r-matrix turns out 
to be dependent on the dynamical variables and will be reported elsewhere. 

We now present a system of the type (2 )  which serves as a discretethe generalization 
of the Wojciechowski system. Set in (2) 

where ck > 0 for all k .  
Obviously, f ( q )  is a gradient of a scalar function log(l+ E:=, cjq:). One shows by a 

direct computation that in such a case the map (q( t ) ,  r ( f ) )  H (q(t +h),  r ( t+  h ) )  preserves 
the following Poisson bracket on Rf x a,": 

{ q k y  q j )  {rkv rjl = 0 { q k ,  r j l  = , / X & k j  , (4) 
qkrk 



8164 Yu B Suris 

It is easy to check that if one denotes 

p ~ = r ~  I - -  J ;!; (5 )  

then the Poisson bracket (4) preserved by the above-mentioned map takes the canonical 
shape 

(qKsqj)=k'k,Pj)=O ( 6 , P j ) = s K j .  (6) 
We now give a Lax pair representation for the system (2), (3). Consider the N + 1 by 

N + 1 matrices depending on the phase variables q ,  r and a spectral parameter A: 
h-ZC-z - E + DqrT 
h-IqTc-1~- '  - hrT 

hDq - h-'C-'r 

- 1 2  + 1 - q T ~ - l r  

t L (q . r ,h )  = 

Here C = diag(c1,. . . , CN). D = D(q,  r )  = diag(d1,. . . , d ~ )  and 

so that 

The matrices L* are connected by an obvious similarity transformation 

Consider the Lax-like equation 
M ( f ,  h)Lt ( t  + h ,  h )  = L - ( f ,  h ) M ( f .  A) (8) 

(the dependence of the matrices L * ( f ,  A), M ( f ,  2.) on f is supposed to appear through the 
dependence of q ,  r on t ) .  Because of (7) the equation (8) implies that either of the matrices 
Lt ( t ,  A), L-(t ,  h)  evolves in (discrete) time isospectrally. Direct calculation shows that (8) 
is equivalent to the relations r ( f  + h )  = q(r) , r ( t )  = q(r - h ) ,  and 
D(t + h)q(t  + h )  + D-'(t)q(t  - h)  = D-'( t  +h)q( t  + h)  + D(t)q(t  - h) 

= ZCq(r)(l + q'(t)Cq(t))-' (9) 
which is nothing other than the system (2). (3). 

Hence the characteristic polynomial of either of the matrices L*(A) provides us with a 
number of integrals of this system. One can compute this with the help of the Weinstein- 
Aronszajn formula (cf [7]), considering the matrices L*(h) as rank-3 perturbations of the 
constant diagonal matrix 
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Supposing all the ck’s to be different, one obtains 

Fk 
z + 1 - A-Zc;* 

N 1 
z - 1 + A2 

der(L*(A) - zZ) - - 1 -  
det(lo(A) - 2 1 )  

where (up to an additive constant) 

2cj 
- c 7 q k r k q j r j  

j#k  ‘x’ - ‘I 
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The involutivity of these integrals with respect to the Poisson bracket (4) may be verified 
by direct calculation, like that presented in [6] .  Unfortunately, we did not succeed in 
performing a proof based on either of the two alternative approaches mentioned above (Lax 
representations for the Fk flows and r-matrix). Let us note in this connection that in the 
canonically conjugate variables (q .  p )  (see equations (3, (6)) the Lax matrix L-(A) and 
the integrals Fk are rational, which simplifies calculations considerably: 

(up to an additive constant). 
We conclude this section with the following remark on the continuous limit. To recover 

the Wojciechowski system from (2 ) , (3 )  in the limit h + 0 one has to perform the change of 
variables q w hq,  and assume mk = h3pk, Ck = 1 -fh2UJk+O(h2). The spectral parameters 
of the discrete and continuous-time Lax pairs should be connected by h = 1 + f h o  +o(h). 

3. A discrete version of the Rosochatius system 

The system introduced by Rosochatius in the 19th century and then incorporated in the 
modern framework of integrable dynamical systems in [7-111 is described by the equations 

II: 
c& p k  = -cIJkqk + - Aqk 1 4 k < N 

qk 

where the Lagrange multiplier A must be chosen to assure that the point q = (41, . . . , qN)’ 
remains on the unit sphere SN-’ C BN: (q,  q )  = 1, (q ,  p )  = 0, i.e. 

N 

j=l 



8166 Yu B Suris 

This system is Hamiltonian with a Hamiltonian function 

with respect to the Poison bracket ( , )*  which is a Dirac reduction of the standard Poisson 
bracket to the common level set of the two functions 11 = (q,  q )  - 1 = 0, 12 = (q ,  p )  = 0. 
Recall the explicit formula for the Dirac reduction 171: 

i.e. in our case 

{ q k I q j p = o  { P k . q j ) ’ = 6 k j - q k q j  I P k . P j ) * = q k P j - P k q j .  
For the case when all the wk’s are different Moser gave the expressions for N integrals of 
this system, 

(Pkqj - P j q k Y  + $qf + $q; 
Wk - Wj 

Fdq? P )  = qx” + 
i # k  

which, however, are not independent on the constrained phase space since C,“=, Fk = 
(4.4) = 1.  The integrals are in involution with respect to both the unreduced and the 
reduced Poisson brackets, which was proved in 171 by means of construction Lax pair 
representations for all Hamiltonian flows generated by Fk. Such a representation for the 
‘H = E,”=, w k ~ b  ROW reads 

t = [M,Ll  
where L, M are N by N matrices depending on the phase-space variables p , q  and a 
spectral parameter a: 

(the meaning of the symbols Q, p/q,  and Q is the same as in section 2). 

side) which is a discrete-time generalization of the Rosochatius system: for this system 
We now present a system of the type (2) @ut with f k ( q ( t ) .  q(t  - h) )  on the right-hand 

(11) 
where a Lagrange multiplier A@@), q(r - h ) )  must be chosen in such a way as to ensure 
that q(t + h )  lies on P”’ provided that q ( t )  and q(t - h )  both do likewise. It is easy to 
obtain 

f k ( 4 .  r )  = A ( q ,  r ) C k q k  

One obtains immediately from (2), (11) that the choice (12) implies 

which makes obvious the reversibility of our system. 
The equation (2) with the choice ( I  I), (12) defines a map 

( q ( f ) , r ( t ) )  t+ ( q ( t + h ) . r ( t + h ) )  
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of S N - '  x SN-'  onto itself. This map is symplectic with respect to the Dirac reduction to 
this set (described by pl = (q .  q )  - 1 = 0, 92 = (r,  r )  - 1 = 0) OF the following Poisson 
bracket: 

{qk. qj t = Irk, r j )  = 0 (qr, r j )  = c k / G & j  , (13) 

This fact can be proved by a direct calculation based on the explicit formulas for the reduced 
bracket 

{qk, qjJ* = (Tki T j l*  = 0 

c k c j r . k q j / - / q  (14) 

J "  (qk,r,r=ck 1 - m a k j -  
N /-z 

CI=l clqlrl 1 - & 
A more conceptual proof of this fact can be obtained along the lines of 131, if one 

represents (2). (1 1) as a discrete-time Lagrangean system on SN-l x SN-' with a Lagrangian 
T ( q ,  r )  defined by the relations 

The Poisson bracket (13) is generated by the symplectic form 

on P N  x RN, and the Poisson bracket (14) is generated by its restriction on SN-' x SN-I.  
We now give a Lax pair representation for the system (Z),(ll),(l2). Consider two N 

by N matrices depending on the phase variables (q ,  r )  and a spectral parameter A: 

L(q ,  r, A )  = C-' t A(rqTC-'D-I - DC-'qr') - A2rrT (15) 

(16) M(q ,  r, A) = C-'D-] - AqrT 
(the symbols C, D have the same meaning as in section 2). Then it  is not hard to see that 
the matrix equation 

L(t  t h,  A ) M ( t ,  A) = M ( t ,  A)L(t, A) (17) 
on sN-I 

C-][D( t  + h)q(t + h )  + D-'(t)q(t  - h)lq'(t) 

sN-I IS ' equivalent to r( t  + h )  = q( t ) ,  r ( t )  = q( t  - h), and 

= q(t)[qT(t  t h)D-'(t + h )  + qT(i - h)D(t)]C-' (18) 
which is just equvalent to (12). 

Note also the following factorization property: 

L(q ,  r, A) = &q, r ,  A)M(q, r. A) 

$ ( q ,  r, A )  = C-ID + ArqT. 

L ( t ,  A )  = $ ( t ,  A ) M ( t ,  A) 

(19) 

(20) 

(21) 

where 

Now we have from (17),(19) 

L ( f  t h ,  A) = M ( t ,  A)G(t, A) 
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hence the machinery of matrix factorization developed in [3] also applies for the discrete- 
time Rosochatius system. 

Applying the Weinsteinstein-Aronszajn formula, we obtain 

Fk N 
= 1 + h Z C - -  

k=i z - c;= 

det(l(h) - z l )  
det(C-* - z l )  

where, up to an additive constant, 

Note that this time the variables (4. p )  (see equation (5))  are not canonically conjugate 
in the strict sence, since the unreduced Poisson bracket (13) in these coordinates looks like 

{qk, q j )  = {Pk. P j ]  = 0 { q k s  p j )  = ck8kj 

and the reduced one (14) looks like 

Still, these expressions are simple and useful in calculations. The matrix 

-12 ( p  - i:) ( p  + i f )T  

and the integrals 

turn out to be rational in the variables (4. p ) ,  just as in section 2. 
The only proof of involutivity of these integrals we have at present is based on direct 

calculation, which is omitted here for the sake of brevity. 
To conclude this section, note that the continuous limit in this case is achieved if one 

sets mk = hfik. Ck = 1 - ih2Wk + o(h2) and lets h + 0; the spectral parameters in the 
continuous- and discrete-time Lax pairs should be connected by L. = h a .  
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4. Concluding remarks 

In this paper we introduce a novel class of integrable symplectic maps which, in the 
continuous limit, turn into well known nonlinear oscillators subject to the additional inverse- 
square potential. The Lax pair representations for these maps are found, which provide a 
systematic way of finding the integrals. 

Conceptual proof of involutivity of these integrals, however, is still lacking at the 
moment. It would be rather interesting to find out the r-matrix structure (which we expect 
to be dependent on the dynamical variables) for our models. 

Note further that both the Wojciechowski and the Rosochatius systems can be solved 
by means of the method of variables separation. Performing its discrete-time analogue is 
an important problem that remains open. 

Finally, connection with the theory of Adams, Harnad and Previato [ I  11 remains to be 
clarified. 

Work on these issues is now in progress. 
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